Colloque international sur l'étude, la restauration et la gestion de l'alose International symposium on restoration and conservation of shads

Session 2 - Habitats

Bergerac 2015

Oxygen and temperature sensibility of Allis shad embryos, larvae and juveniles

Jatteau Ph, Lambert P.

Mailisch - Grande Alose - Elft

Decrease of recruitment indicators

- Since the begining of the 2 000s
- Even when high level of reproduction remained

Context

Decrease of recruitment indicators

- Since the begining of the 2 000s
- Even when high level of reproduction remained

What could be the factors affecting survival ?

- Predation, feeding resources, habitat, muddy plug
- Studies focused on the 2 main abiotic factors
 - Temperature
 - Temperature and oxygen

embryos and larvae

juveniles

Effects of temperature on embryos and larvae

Experimental study

- 2 years
- 2 replicats per temperature recirculated system
- Targeted temperatures reach progessively (0.1°C⁻¹)
- 7 temperatures each year

Effects of temperature on embryos and larvae

- 25 g of eggs per incubator (about 2 500 embryos)
- Survival assessment just before hatching
- Application of a survival model

Effects of temperature on embryos and larvae

B. Larvae experiment

- 300 larvae per tank
- Mortality recorded daily
- From Day-3 to 14 (dph)
- Application of a survival model

Temperature (°C)

Temperature (°C)

% of survival

rs

Oxygen tolerance of juveniles

Experimental study

- 2 temperatures: 20 and 25°C
- 2 series per temperature recirculated system
- Progressive decrease of the oxygen level (Beitinger et al., 2000 – Plaut 2001)

1 series = 3 *hypoxic* tanks 1 control tank

Oxygen tolerance of juveniles

Protocol of oxygen decrease

Oxygen tolerance of juveniles

Experimental study

- 2 temperatures: 20 and 25°C
- 2 series per temperature recirculated system
- Progressive decrease of the oxygen level (Beitinger et al., 2000 – Plaut 2001)
- 3 behavioral indicators:
 - altered swimming
 - Loss of equilibrium
 - Death

1 series = 3 hypoxic tanks 1 control tank

Results Thresholds appearance of the 3 criteria 5,0**0**2 mg.l⁻¹ 46 % O₂ Sat 4,0 3,0 24 % O₂ Sat 2,0 1,0

Altered swimming

Loss of equilibrium

0,0

Oxygen tolerance of juveniles

■ 20°C

■ 25°C

Death

Conclusion - Persectives

Embryo – larvae experiment

- Larvae have a wider optimal range for temperature
- Low field temperatures (especially during incubation) could have negative effects on survival

spawning season

Conclusion - Perspectives

Juvenile experiment

- Higher sensibility to hypoxia at 25°C
- Loss of equilibrium threshold regularly reached in the mud plug

Merci de votre attention

Thanks for your attention

Vielen Dank für Ihre Aufmerksamkeit