

Dispersal capacities of Allis Shad (*Alosa alosa*) under global change: insights of innovative otolith microchemistry analysis

Jean Martin, Françoise Daverat

Quentin Rougemont, Hilaire Drouineau, Sophie Launey, Philippe Jatteau, Gilles Bareille, Sylvain Berail, Christophe Pécheyran, Eric Feunteun, Séverine Roques, David Clavé, David Jose Nachón, Carlos Antunes, Micaela Mota

14 et 15 octobre 2015 Colloque Alose Restitution Life Plus

Objectives

The recovery of collapsed fish stock depends on:

- 1) the resilience of local population
- 2) on the possible contribution of fish that disperse from other populations

Thus, understanding this <u>straying behavioral diversity</u> at the individual scale may be necessary to ensure anadromous fishes resilience in the face of anthropogenic threats and changing environments

Combination of multiple tools

Genetic markers

Otolith fingerprints

Population structure

Natal origin

Long-term connectivity patterns on evolutionary time scales Dispersal patterns within the time scale of an individual lifetime

By using both techniques on the same individuals, we may obtain information about the **dispersal pattern of a given fish together with its natal origin and heredity**

Sampling

At each river, water samples were collected from late May to September 2013, close to historic spawning area of Allis shad.

				Adult	S		_
	Rivers	2009	2010	2011	2012	2013	Total
	Adour E.			2		29	31
2	Adour R.	_				6	6
	Aulne	Ad	luits	S		12	12
	Blavet					7	7
	Dordogne				5	66	71
	Garonne				27	37	64
	Lima					4	4
	Loire			4		24	28
	Minho	24	21	25		17	87
	Mondego					15	15
	Nivelle	16					16
	Saison					6	6
	Scorff					10	10
	Vilaine		3	10		6	19
	Vire			7		27	34
			T				410
			Juve	niles		_	
	Rivers	2009	2011	2012	2013	Total	
3	Adour E.	1					
-1	Adour K.	Ju	/eni	nes			
	Aume -				16	16	
	Dordogne				3	3	
	Garonne				5	5	
1	Lima						
	Loire				4	4	
-	Minho	10	4	6		20	
	Mondego						
	Nivelle						
	Saison						
	Scorff						
	Vilaine				1	1	
	Vire						
						44	

Otolith analysis

Bayesian hierarchical mixture model

Adult Allis shad allocations to natal rivers

Posterior conditional assignment probabilities were higher than 0.80 for 85% of fish

NIALA	
Nata	river

Collection site	Vire	Aulne	Scorff	Blavet	Vilaine	Loire	Charente	Dordogne	Garonne	Adour R.	Oloron	Saison	Nive	Nivelle	Minho	Lima	Mondego	Undetermined
Vire (34)				3	31													
Aulne (12)		11 (92%)																1
Scorff (10)				9 (90%)														1
Blavet (7)				7 (100%)														
Vilaine (19)			1	2	16 (84%)													
Loire (28)					3	24 (86%)												1
Dordogne (71)								61 (86%)										10
Garonne (64)								46 (72%)		11				3				4
Adour R. (6)		1								5 (83%)								
Adour E. (31)		1								13 (42%)	17 (55%)							
Saison (6)										3 (50%)				3				
Nivelle (16)														16 (100%)				
Minho (87)					1										86 (99%)			
Lima (4)															2	2 (50%)		
Mondego (15)	2								1					1	11			

17 adults (4%) were classified as "undetermined" indicating that those individuals represent heterogeneous signatures not well represented in the training data

	Aulne	Blavet	Vilaine	Loire	Dordogne	Nivelle	Minho
Aulne	92%						
Blavet		100%					
Vilaine			84%				
Loire				86%			
Dordogne					86%		
Nivelle						100%	
Minho							99%

HOMING at TRIBUTARY SCALE

	Garonne	Dordogne	Adour river	Oloron	Blavet
Garonne		72%			
Dordogne		86%			
Adour estuary			42%	55%	
Saison			50%		
Blavet					100%
Scorff					90%

HOMING at RIVER BASIN SCALE

	Aulne	Vilaine	Loire	Adour	Nivelle	Minho
Loire		18%				
Garonne				25%	11%	
Adour river basin	3%				8%	
Minho		1%				
Mondego					7%	73%

Collection site

STRAYING occured first from close river basins but also occured from distant river basins (at least 47 out of 410 shads sampled)

		Garonne	Dordogne	Adour	Nivelle	Un-determined
tion site	Dordogne 2012 & 2013		61			10
Collect	Garonne 2012 & 2013		46	11	3	4

Specific case of Garonne and Dordogne

Absence of Garonne natal origin in adults born in 2007 and 2008 2007 & 2008 low abundance years of adults

Genetic structure

The D.A.P.C. analysis indicated the existence of 5 genetically distinct groups that were moderately differentiated

Extensive gene flow between populations of Allis shad were already suggested in French rivers using allozymes markers (Alexandrino et al. 2006) and mtDNA (Faria et al. 2012)

Conclusions

We provided a valuable qualitative view on the dispersal and homing patterns of Allis shad.

Bayesian tools useful to determine geographical origins of individuals (incorporate several sources of information).

Based on the relationship between water and otolith signatures, the model allowed us to **predict otolith chemistry** for rivers where juveniles were not available (*Pflugeisen 2013*)

Most shads of our sample returned to spawn in their natal RiVER BASIN The scale of the **homing behavior** of *A. alosa* is the **RIVER BASIN**

A.alosa exhibited a straying behaviour outside their natal River Basin (>10% of our sample), which was supported by a weak spatial genetic structure at the population level (on evolutionary timescales)

Straying mostly occurred between neighbor rivers (importance of spatial connectivity)

Garonne and Dordogne River cases: specific 2007 and 2008 cohorts weakness or ?

Thanks for your

attention

