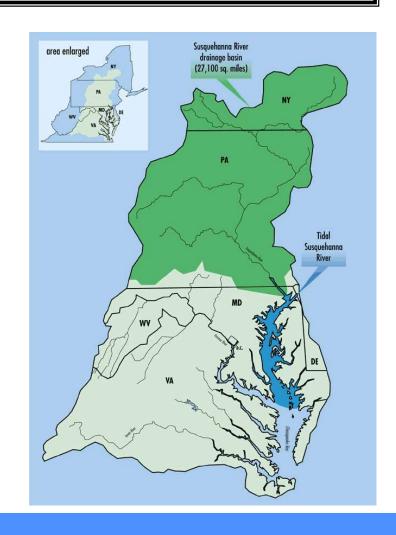


Colloque international sur l'étude, la restauration et la gestion de l'alose International symposium on restoration and conservation of shads

American Shad Restoration and Passage on the Susquehanna River, USA

American Shad Restoration and Passage on the Susquehanna River, USA


Chris Frese (Kleinschmidt Associates, Strasburg PA, USA)

Session 1: Les actions du programme Life+ Alose / Results of the Allis shad project

Today's Objectives

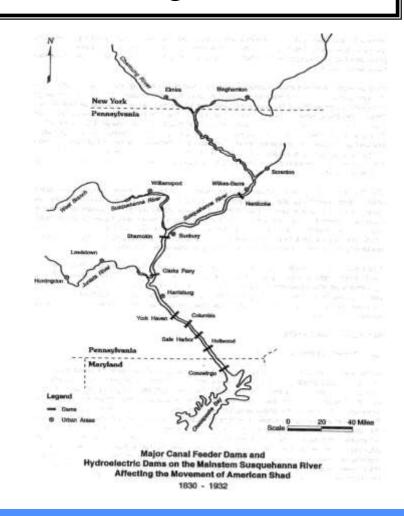
- Historic Overview of Susquehanna River American Shad
- Recent Restoration Activities
- Passage at Mainstem Hydropower Dams
- American Shad Statistics
- Near Term Improvements to Restoration
- Long Term Restoration Concerns

American Shad - A Lost Legacy in the Susquehanna River

• American Shad were an important food source for Native Americans

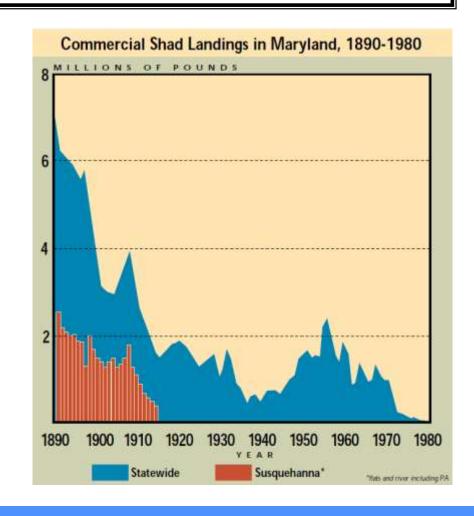
• Shad reached the Susquehanna River headwaters near Cooperstown New York; a 640 mile journey

• First commercial fishing for Shad in PA established in 1750's


• Shad were abundant in the River prior to the installation of feeder dams for the PA canal system in 1830

Historic Overview - Dams, Pollution and Overfishing

- Construction of Columbia Canal Feeder Dam in 1830's blocked hundreds of miles of spawning habitat
- Sizable shad fisheries developed in the River below Columbia Dam and at the head of Chesapeake Bay
- In 1866, Pennsylvania Legislature passed a law directing persons or companies that owned dams on the Susquehanna River and certain tributaries to "make, maintain and keep a sluice, weir or other device for the free passage of fish and spawn, up and down the stream…"
- This Act created the office of commissioner, appointed by the governor, to oversee and enforce the fish passage provision, the appointment was forerunner of the present-day PF&BC


Historic Overview - Railroad Replaced Canal System

• By late 1800s shad runs resumed on the River once dams at Columbia and upriver were abandoned and breached

• During 1890 to 1909 Pennsylvania shad landings averaged 63,000 fish

• In 1896, the Maryland and Pennsylvania shad catch in the River was 140,000 fish

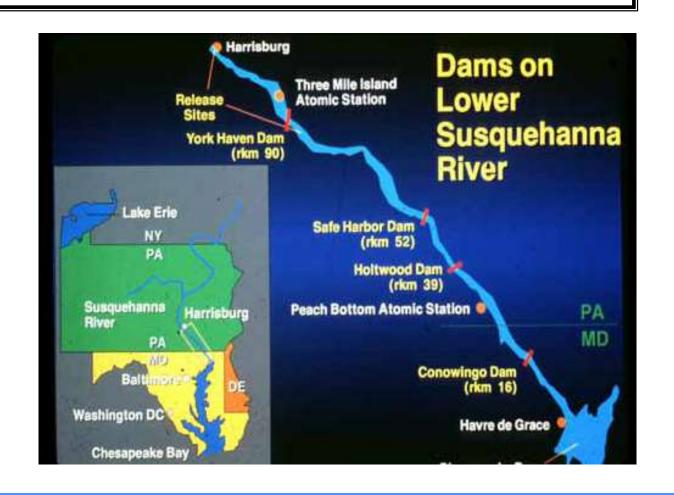
• Total Maryland shad catch that year was 1.4 million fish

Early Fishways Failed

- Two Fishways were constructed at Holtwood Dam
 - Rock Ramp on West shore of River
 - A concrete flume on east side of River
- Passage at the two Holtwood fishways was very limited
- Federal and State fishery authorities conceded fish passage not practical at high Dams
- No Fishways constructed at the 95 ft. high Conowingo Dam
- Eliminated Susquehanna River American shad resource in PA.

Recent Restoration Activities

- In 1969, Susquehanna Shad Advisory Committee formed
 - U.S. Fish & Wildlife Service
 - Pennsylvania Fish Commission
 - New York Department of Environmental Conservation
 - Maryland Department of Natural Resource
- In 1970, agreement reached with dam owners to stock the River with shad eggs and build a trapping facility along the west shore at Conowingo Dam
- In 1972 West Lift at Conowingo Dam Placed in Service
- In 1976 egg stocking replaced with culture and release of shad fry; PF&BC developed Van Dyke Research Station
- Shad Advisory Committee renamed "Susquehanna River Anadromous Fish Restoration Committee" (SRAFRC)


Four Hydroelectric Dams Constructed on Lower River 1904 - 1931

• York Haven Dam – 1904, River Mile 55

Holtwood Dam - 1910, River Mile 24

• Conowingo Dam - 1928, River Mile 10

• Safe Harbor – 1931, River Mile 31

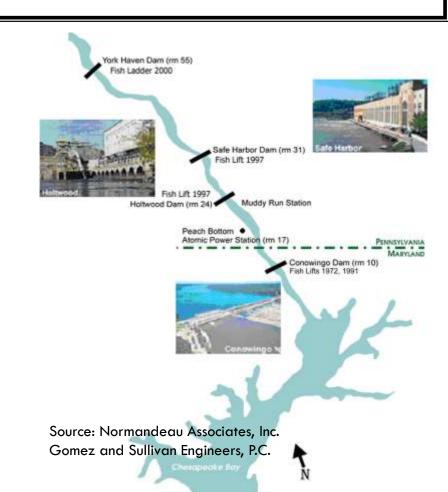
1979 – Strategic Restoration Plan Adopted For River

Reopen river to natural migrations

Within 25 years restore annual spawning populations upstream of York Haven Dam:

- 2 million shad
- 10 million river herring

Goals adopted by Susquehanna River Basin Commission (SRBC) in its Comprehensive Plan for management of the Susquehanna River Basin

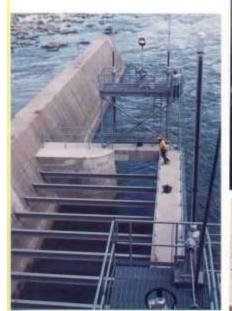


1980 – FERC Issues Long Term Operating Licenses

• FERC renewed licenses for the four Susquehanna River Hydroelectric projects

• Questions related to shad restoration addressed at hearings in Washington, D. C.

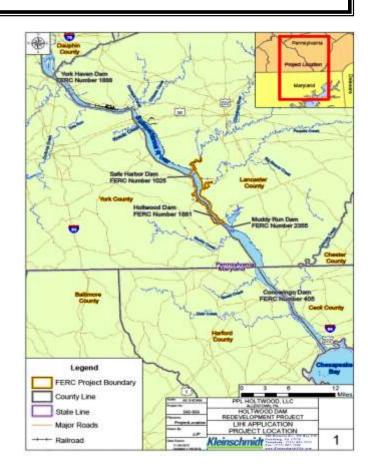
• Parties urged to negotiate a settlement that would result in design and implementation of cost-effective program to rebuild shad stocks



Philadelphia Electric Agreement

 Resulted in construction of a permanent fish passage facility at the east side of the Conowingo powerhouse

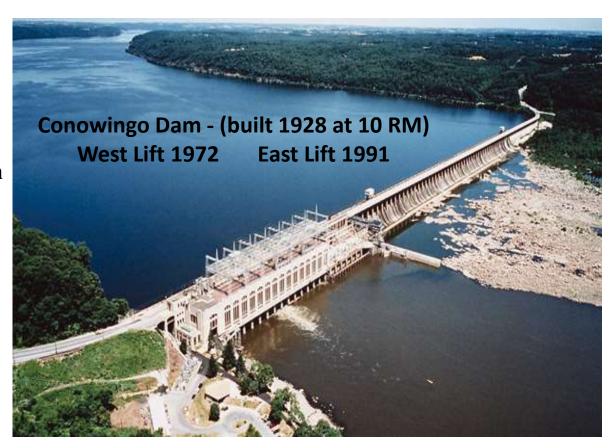
• Fish passage facility designed to pass 1.5 million shad and 10 million river herring



Important Aspects of Upstream Agreement

- Upstream Utilities provided PFBC \$3.7 million dollars over 10 year period (1985 -1994)
- Funds used for trap and transfer of adult shad and expand hatchery operations
- Conduct other studies related to shad restoration
- Parties agreed to resolve outstanding issues related to design and construction of fish passage facilities at Holtwood, Safe Harbor and York Haven

Susquehanna River Restoration Methods


- Restoration Methods
 - Hatchery stocking, trap/transport
 - Fishways, fishing moratorium
- Fishways at lower 4 Mainstem dams
- Goal: 3 million shad to the mouth of the river
- 18 year shad passage average
 - ~ 62,300 shad 1st Dam (Conowingo)
 - ~ 10,425 Shad passed at Conowingo in 2014

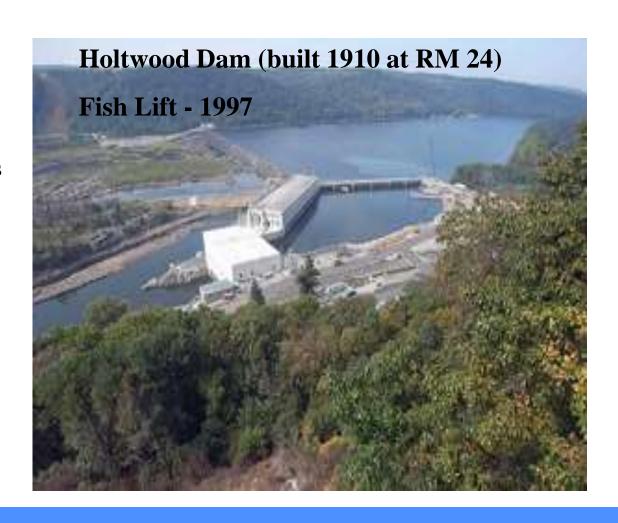
Conowingo Hydroelectric Project (FERC No 405)

- Completed in 1928
- Consists of a concrete gravity overflow dam 4,869 ft. long by 95 ft. high and a powerhouse
- Power house contains 11 turbines, 7 Francis units & 4 Kaplan Turbines that were replaced (1992 -1996)
- Excess flows spilled through 50 crest gates & 1 reg. gate
- Powerhouse has a hydraulic capacity of 85,0000 cfs
- Powerhouse has a generating capacity of 549.5 MW
- Project forms Conowingo Pond (14 mile long impoundment)

Conowingo West Fish Lift

- Trapping device constructed on the west side of the Conowingo tailrace
- Placed in service in 1972
- Since 1985 most shad were transported upriver
- Since 1997 used to collect shad for hatchery needs and special studies

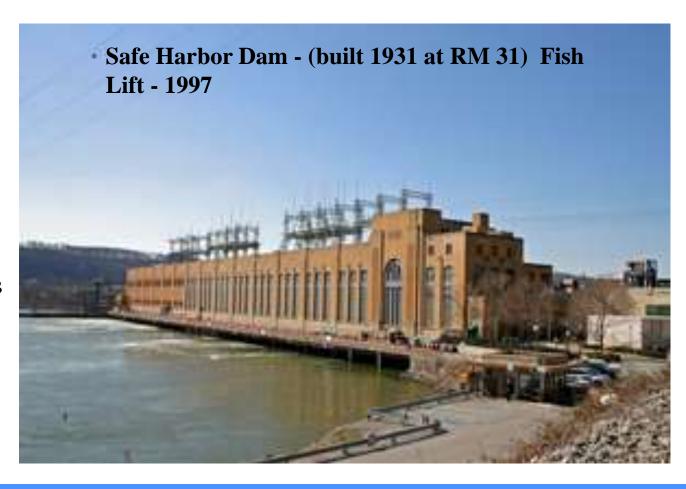
Conowingo East Fish Lift


- Trap and transport facility placed in service in 1991
- Operated as trap & transport facility between 1991 and 1996
- Volitional passage commenced in 1997
- Designed to pass 1.5 million shad and 10 million river herring
- Three entrances (A, B, & C)
- Fish are hoisted and sluiced into to a trough and are counted as they swim into Conowingo Pond

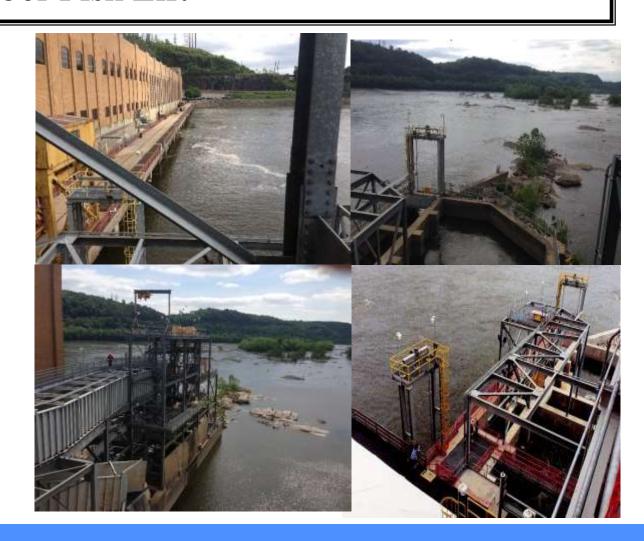
Holtwood Hydroelectric Project (FERC No. 1881)

- Completed in 1910
- Consists of a concrete gravity overflow dam 2,392 ft. long by 55 ft. high and a powerhouse
- Legacy Powerhouse contains 10 turbines; 3 single runner Francis & 7 double runner Francis turbines, each capable of passing 3,000 cfs with a total hydraulic capacity of 32,000 cfs
- New Powerhouse contains 2 Kaplan turbines, each capable of passing 15,000 cfs with a total hydraulic capacity of 30,000 cfs
- Project has a hydraulic capacity of 61,500 cfs and a generating capacity of 195.5 MW
- Project structures form Lake Aldred (7 mile long impoundment)

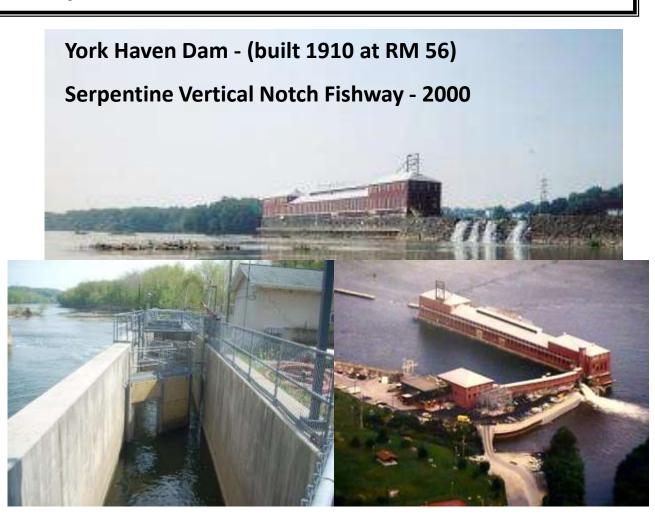
Holtwood Fish Lift

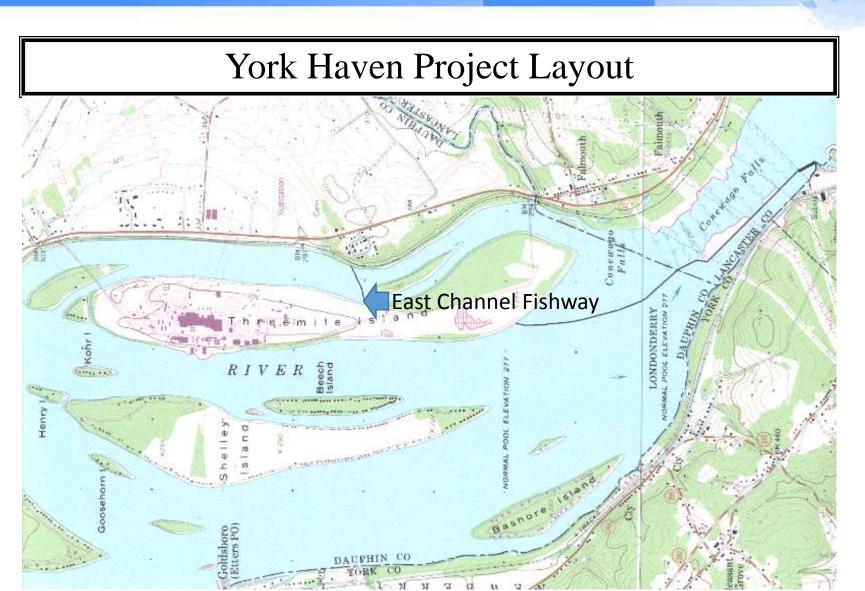

- Placed in service in 1997
- Designed to pass 2.7 million shad equivalents (where 10 river herring equal 1 shad)
- Comprised of a spillway lift and tailrace lift
- Tailrace lift has two entrances (A & B)
- Spillway lift has one entrance (C)
- Fish are hoisted and sluiced into to a trough and are counted as they swim into Lake Aldred

Safe Harbor Hydroelectric Project (FERC No 1025)


- Completed in 1931
- Consists of a concrete gravity overflow dam 4,869 ft. long by 75 ft. high and a powerhouse
- Power house contains 12 turbines, 7 original units (Kaplan turbines) and five mixed flow units added in 1986
- Each Unit is capable of passing approximately 8,500 cfs
- Powerhouse has a hydraulic capacity of 110,000 cfs
- Powerhouse has a generating capacity of 417.5 MW
- Project forms Lake Clarke (10 mile long impoundment)

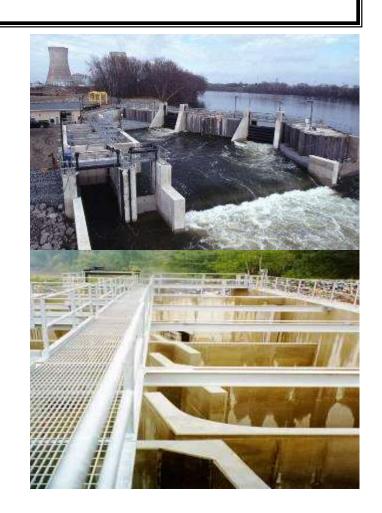
Safe Harbor Fish Lift


- Placed in service in 1997
- Designed to pass 2.5 million shad and 5 million river herring
- The lift has three entrances (A, B & C)
- Operation of entrances dependent on station generation
- Fish are hoisted and sluiced into to a trough and are counted as they swim into Lake Clarke



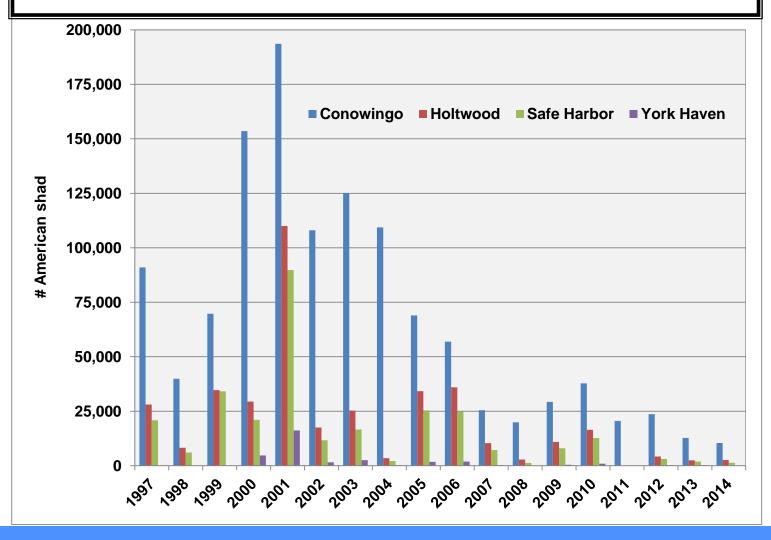
York Haven Hydroelectric Project (FERC No. 1888)

- Completed in 1904
- Project includes a powerhouse and two dams; a 5,000 ft. long Main Dam and a 970 ft. long East Channel Dam
- Powerhouse contains 20 turbines; 6 Propeller & 14 Francis turbines
- Powerhouse has hydraulic capacity of 17,000 cfs
- Units are capable of passing between 800 and 1,1000 cfs Powerhouse has a generating capacity of 19 MW
- Project structures form Lake Frederic (5 mile long impoundment)



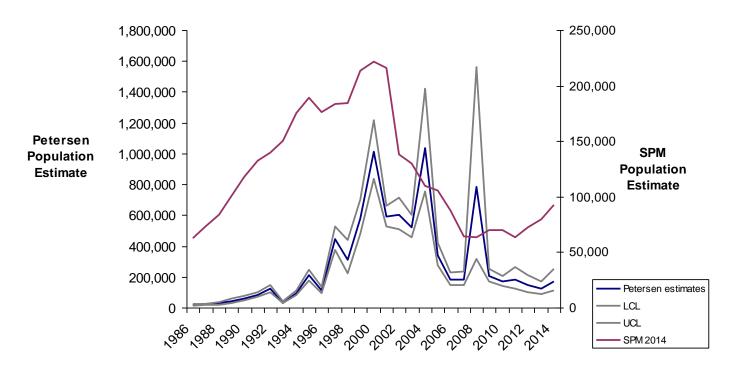
York Haven Fishway

- Placed in service in 2000
- Fishway includes a "Weir Cut" and vertical notch fish ladder
- Designed to pass 500,000 shad equivalents (where 10 river herring equal 1 shad)
- When river flows are less than 23,000 cfs York Haven spills 4,000 cfs over the Main Dam and 2,000 cfs through the East Channel Dam in order to improve fish passage

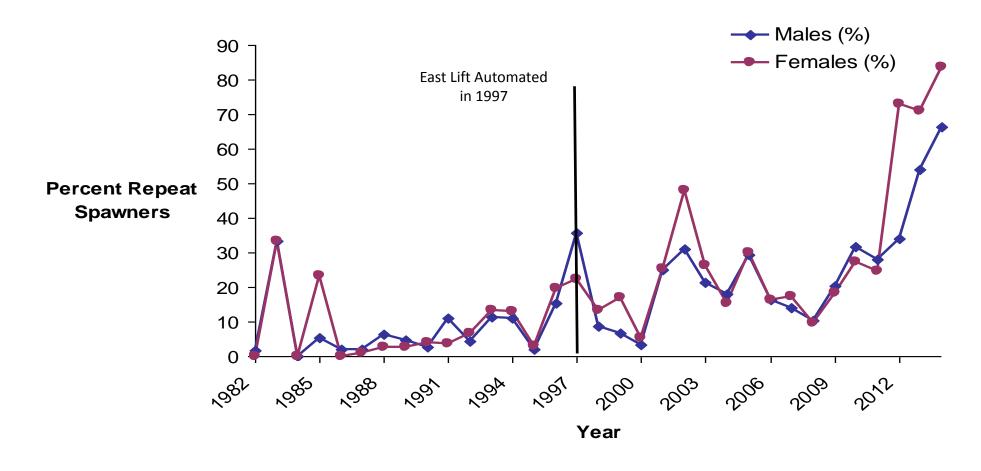


Susquehanna River Passage 1997 - 2014

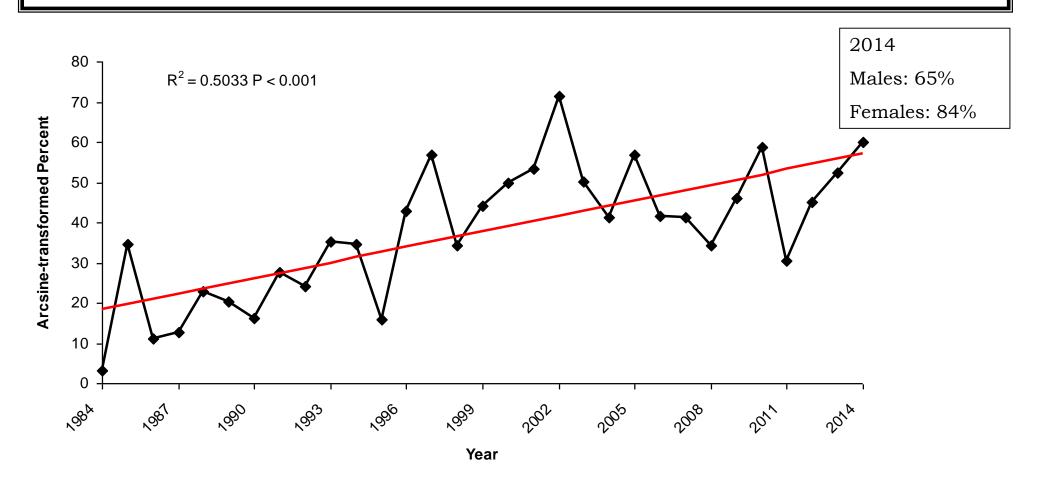
	Conowingo	Holtwood	Safe Harbor	York Haven	Holtwood	Safe Harbor	York Haven	Overall
Year	(rm 10.0)	(rm 24.6)	(rm 32.2)	(rm 56.1)	%	%	%	%
1997	90,971	28,063	20,828	-	31%	74%	-	-
1998	39,904	8,235	6,054	-	21%	74%	-	-
1999	69,712	34,702	34,150	-	50%	98%	-	-
2000	153,546	29,421	21,079	4,687	19%	72%	22%	3%
2001	193,574	109,976	89,816	16,200	57%	82%	18%	8%
2002	108,001	17,522	11,705	1,555	16%	67%	13%	1%
2003	125,135	25,254	16,646	2,536	20%	66%	15%	2%
2004	109,360	3,428	2,109	219	3%	62%	10%	0%
2005	68,926	34,189	25,425	1,772	50%	74%	7%	3%
2006	56,899	35,968	24,929	1,913	63%	69%	8%	3%
2007	25,464	10,338	7,215	192	41%	70%	3%	1%
2008	19,914	2,795	1,252	21	14%	45%	2%	0%
2009	29,272	10,896	7,994	402	37%	73%	5%	1%
2010	37,757	16,472	12,706	907	44%	77%	7%	2%
2011	20,571	21	8	0	0%	38%	0%	0%
2012	23,629	4,238	3,089	224	18%	73%	7%	1%
2013	12,733	2,503	1,927	202	20%	77%	10%	2%
2014	10,425	2,625	1,336	8	25%	51%	1%	0%
Total	1,195,793	376,646	288,268	30,838	29%	69%	9%	2%



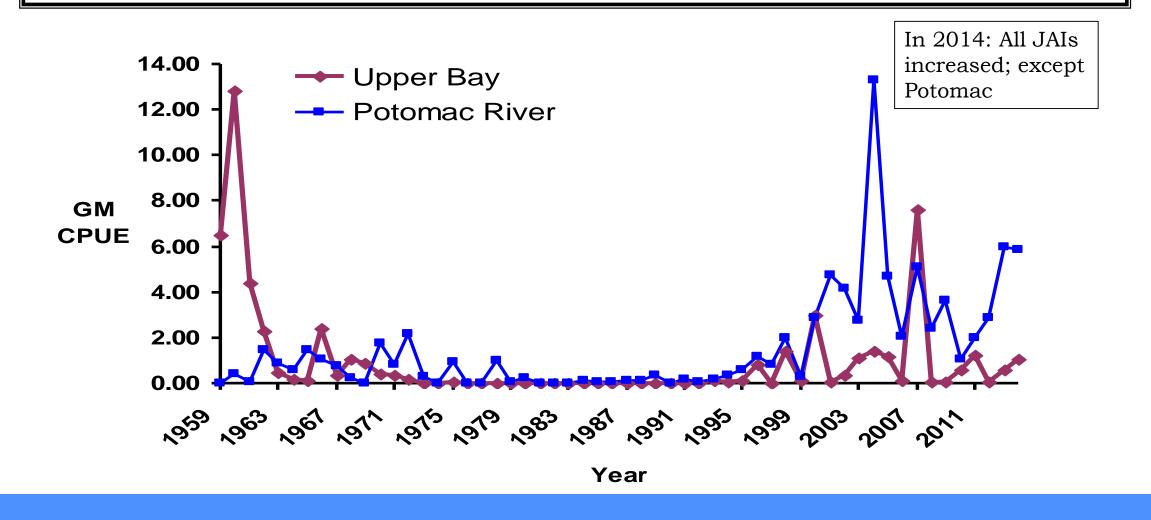
Susquehanna River American Shad Passage


MD DNR Shad Population Estimates 1986 -2014

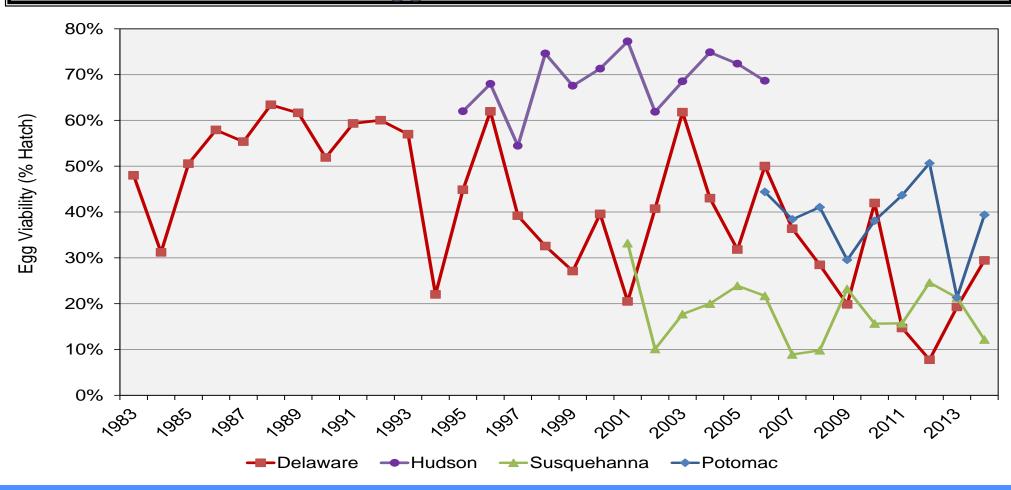
- Petersen estimate: 167,877 fish 2004, 2008 & 2014 estimates suspect because low recapture rates (<0.1)
- Surplus Production Model Estimate: 92,685 fish
- Trends are more important than point estimates



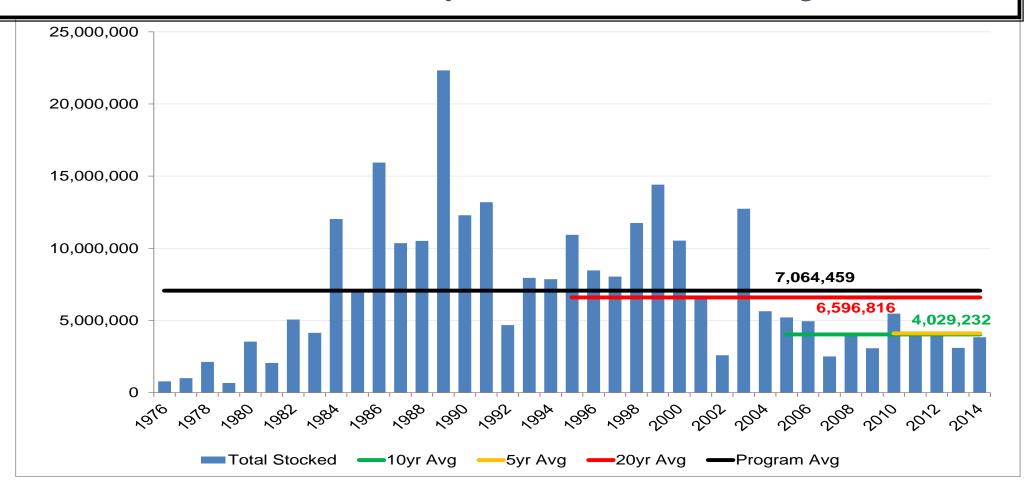
Trend for Repeat Spawners 1982-2014



Repeat Spawners in the Tailrace

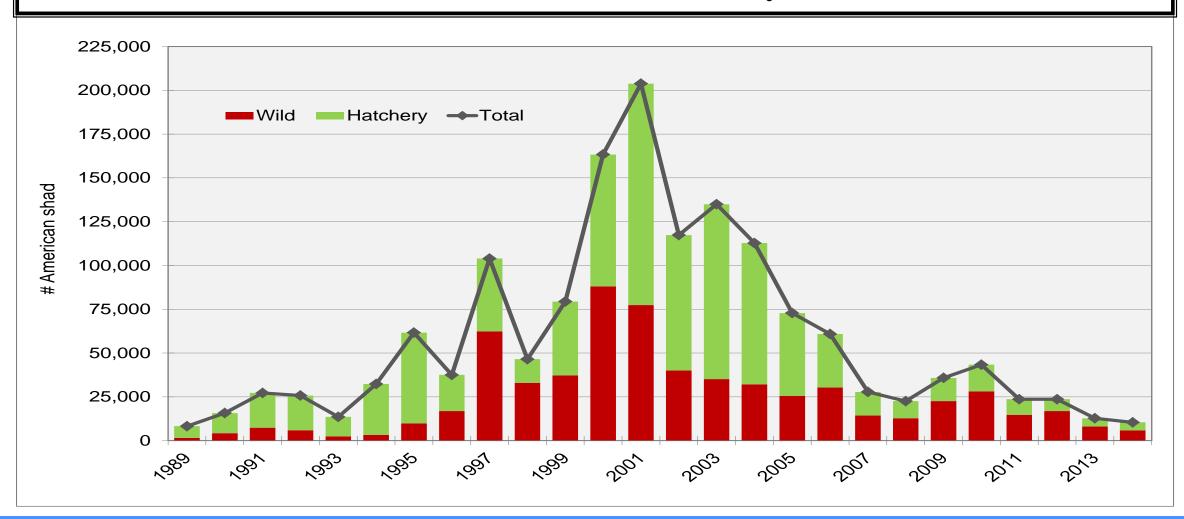


Juvenile American Shad Relative Abundance



American Shad Egg Collections Egg Viabilities (%)

American Shad Fry Production & Stocking



Susquehanna River Juvenile American Shad Collections

	Lift Catch	Seine	Catch			
Year	Holtwood	Columbia	City Island			
1985	3626					
1986	2926					
1987	832					
1988	929					
1989	556					
1990	3988	285				
1991	208	170				
1992	39	269				
1993	1095	218				
1994	206	390				
1995	1048	409				
1996		283				
1997	1372	879				
1998	180	230				
1999	490	322				
2000	406	31				
2001	1245	377				
2002	68	0				
2003	61	17				
2004	0	25				
2005	200	23				
2006	8	1				
2007	0	2				
2008	1	0				
2009	0	0				
2010		3	2			
2011		3	2 2 0			
2012		1				
2013		1	0			
2014		9	24			

Adult American Shad Otolith Analysis Results

PFBC Cohort Analysis - Hatchery Larvae, Juveniles & Transported Adult Shad

• Recruitment by year class determined for hatchery and wild origin fish, stocked above dams, to Conowingo Lifts

Lift catch for each year portioned into its component year classes based upon age composition and otolith marking

Total Recruitment by year class was determined for hatchery and wild fish by summing data for each year class over its recruitment history

- Mean Number of larvae required to return 1 adult (1986-2000): 314
- Mean Number of hatchery fingerlings required to return 1 (1986-1994): 196
- Mean number of adults transported upriver to return 1 adult (1986-2000): 2.10

Recruitment of Hatchery Larvae to Conowingo Lifts

Cohort															
Year	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
1988	13														
1989	373	16													
1990	1,690	166	0												
1991	5,909	2,098	307	0											
1992	5,419	5,966	2139	545	0										
1983	277	1,530	4014	1,867	69	0									
1994	0	859	5,534	13,395	4,682	0	0								
1995		0	1,517	5,089	23,425	13,570	1,916	0							
1996			0	133	2,505	6,619	5,854	1,366	51						
1997				0	0	3,196	5,668	15,275	9,191	141					
1996					0	70	978	4,439	3,755	322	0				
1999						205	359	2678	11,344	17,191	3,902	0			
2000							0	344	4489	12615	32,605	6,876	0		
2001								0	2339	24,562	57,254	27,486	2,339	0	
2002								0	413	2,067	10,544	13,360	8,576	6,616	0
2003									0	515	5,283	29,330	22,444	30,281	2573
2004										0	501	7,515	10,521	32,481	9,018
2005											0	171	812	7,447	6,854
2006							_					0	0	869	2782
rearuits to lifts:	13,680	10,635	13,510	21,008	30,681	23,661	14,776	24,102	31,562	57,413	110,089	84,739	44,692	77,695	21,227
eses (milions):	990	5.18	6.45	13.46	562	722	3.04	6.54	642	1000	7.47	802	11.70	1350	9.46
pretum 1 adult	724	487	477	641	183	305	206	271	203	174	æ	95	262	174	446

0.0016 0.0055 0.0033 0.0049 0.0037 0.0049 0.0057 0.0147 0.0106

Mean number of larvae to return 1 adult (1996-2000): 314

Near Term Improvements to Shad Restoration

Upgrade Active Program Elements (Hatchery & Trap & Transport)

- Recent Licensing & Relicensing Activities to Result in Upstream Fish Passage Improvements at:
 - East & West Lifts at Conowingo Dam
 - Holtwood Dam
 - Installation of Nature Like Fishway at York Haven Dam
- Improved Downstream Passage survival of Downstream Adults and Juvenile Shad at Dams (Goal: Adults 85% & Juveniles 95%)

Long Term Restoration Concerns

 Majority of East Coast Shad Stocks are declining limiting Egg and Brood stock for Active Restoration Program

- Susquehanna River
 - Water Quality (D.O., nutrient loading, Loss of spawning habitat due to siltation in Conowingo Pond, Lake Aldred and Lake Clarke and Upper Chesapeake Bay, etc.)
 - Invasive Species (Gizzard Shad, Zebra Mussels, etc.)
- Global Warming
 - 50 to 75 Year Projections indicate Possible 3° to 5°C H₂0 Temperature Increase
 - Change to East Coast Ocean Currents

Questions?

WWW.KleinschmidtUSA.com
Chri.Frese@KleisschmidtGroup.com

