The Twaite shad in Europe : situation and conservation issues

Miran Aprahamian

Alosa fallax

- 17 Genetic groups:
- 13 anadromous
- 4 landlocked

(data from Sabatino et al., 2015/submitted; Jolly et al., 2012; Rougemont, 2012).

Atlantic:

1- Baltic sea (Curonian lagoon);
2- north Sea (Nissum and Ringkobing Fjiords, Denmark, Scheldt estuary, Belgium, Solway, UK);
3- Severn group, UK (Severn, Wye, Usk);
4- Towy, UK;
5 - west France (Charente);
6 - northwest Portugal (Minho, Lima, Mondego);
7- southwest Portugal (Tejo, Mira);
8 - south Portugal (Guadiana);
9 - Morocco (Sebou);

Mediterranean:

10 - Southern France (Rhone, Herault, Aude);
11 - Corsica/Sardinia (Tavignano, Tirso);
12 - Adriatic (Po, lake Skadar);
13 - Aegean Sea (Pinios, Izmir bay);
Landlocked populations:
14- Killarney, Ireland;
15 - lake Maggiore, Italy;
16 - lake Como, Italy;
17 - lake Garda, Italy

(Sabatino et al., 2015/ submitted).

Conservation status

Conservation status	IUCN (1994) criteria	Countries
Extinct	When there is no reasonable doubt that the last individual has died	Belgium, Luxembourg, Sweden, Netherlands
Critically endangered	When it is facing an extremely high risk of extinction in the wild in the immediate future	Denmark
Endangered	When it is not critically endangered but is facing an extremely high risk of extinction in the wild in the near future	Germany, Lithuania, Poland
Vulnerable	When it is not critically endangered or endangered but is facing a high risk of extinction in the wild in the medium-term future	Ireland, France, Portugal, Spain, UK
Not evaluated	When it has not been assessed against the criteria	Finland
Data deficient	When there is inadequate information to make a direct [or] indirect. assessment of its risk of extinction based on its distribution and/or population status	Sweden
Absent from red data book or equivalent		Austria

Conservation status

Total landings of twaite shad in the Southern Baltic Sea (ICES subdivisions 24-26) from 1887-1959.

No catch statistics available during the time periods 1920-1925 (crisis years of the Weimar Republic) and 1941-1946 (World War II), from Thiel et al. (2008).

Distribution of historical records of twaite shad in subdivisions 21-26 of the Baltic Sea in the time period 1800-1949 (Thiel et al., 2004).

Distribution of historical records of twaite shad in subdivisions 21-26 of the Baltic Sea in the time period 1800-1949 (Thiel et al., 2004).

Conservation Action

Clondulane Weir - first barrier to shads on Munster Blackwater SAC - SNIFFER Survey 9.2014

Fermoy Weir - second barrier on Munster Blackwater SAC (200 m crest)

Tidal lagoons

Oxwich Bay Swansea Bay
(48 MAW)

Welsh Grounds (270 MW)
(1500 MW)

English'Grounds (850 MW)

Culver Sand 0
$(120 \mathrm{MW})$ Watchet (95 MW)

Bridgewater Bay (1900 MW)

Reduction of genetic diversity -

Hybridization

(a) Proportion of habitat area, 1999.

(c) Proportion of habitat length, 1999.

(b) Proportion of habitat area, 2012.

Improved accessibility for shad in England \& Wales

	Area (ha)		Length (km)	
	1999	2012	1999	2012
Good Access	$1177(50 \%)$	$1298(56 \%)$	$240(41 \%)$	$265(45 \%)$
Poor Access	$343(15 \%)$	$212(9 \%)$	$108(18 \%)$	$96(16 \%)$
Inaccessible	$843(36 \%)$	$802(35 \%)$	$241(41 \%)$	$228(39 \%)$

Green = Good access;
Yellow = Poor access;
Black = Inaccessible.

Conservation Measures

- Sanctuary areas
- Fish passes
- Culture

- Translocation
- Legislative change
- Habitats Directive

Issues \& Challenges

- Early life history
- Biological requirements
- Marine life history
- Population dynamics
- Monitoring - status of populations

Egg and larval stages

Colloque international sur létude, la restauration et la gestion de lalose International symposium on restoration and conservation of shads

R. Barrow: Velocity distribution across transect at spawning location, low tide

Water quality - Dissolved O_{2}

- Juvenile Alosa fallax require >4 mgL^{-1} (Möller \& Scholz, 1991).
- Adult Alosa fallax require $>5 \mathrm{mg} \mathrm{l}^{-1}$ to ensure passage upstream through the estuary (Maes et al.,2008)

At sea

(Trancart et al., 2014).

Population Dynamics

YCS in relation to mean June-August temperature

Stock recruitment relationship

Influence of temperature on $S /$ R relationship

Population just able to persist

Influence of temperature on recruitment

Sampling for adult migrating fish (April-June)

- Artisanal netsmen
- Drift netting
- Angling
- Evidence at spawning locations
- Attributes of spawning locations

Egg sampling

- Provides information on distribution
- Not a quantitative indicator

Colloque international sur létude, la restauration et la gestion de lalose International symposium on restoration and conservation of shads

Bongo netting for shad post-larvae:

Recommendations

1. Improve political and public awareness;
2. Effective coordination between administrative bodies, between different parts of the river basins, and between river, estuarine and marine jurisdictions;
3. Improve our system for collecting catch data from fishermen - they need to trust us;
4. Improve our understanding of habitat use and their biological requirements particularly during the marine stage;
5. Improve the efficiency of fishways;
6. Develop methodologies and collect data to calculate management targets and limits with coordination between conservation and fisheries objectives;
7. Assess the possibility of using these species in metrics of habitat continuity and/or quality.

