

État des connaissances sur les passes migratoires pour l'alose américaine aux États-Unis.

State of the knowledge on fish passes for American shad in the USA.

François Groux, Jean Therrien (WSP Canada) Matthieu Chanseau, Dominique Courret (ONEMA, France) Stéphane Tétard (EDF, France)

Session 2 : État des connaissances / State of science

Bergerac 14-15 octobre 2015

What?

Literature review and site visits in North America, Atlantic Coast

Why?

Alosa alosa and *Alosa sapidiss*ima have similar migratory behaviors To obtain a feedback for fishways design criteria after 60 years of monitoring in the US

Who ? ONEMA – EDF and WSP as consultant

Literature review :

More than 100 documents reviewed : studies of fish passes efficiency, restauration plans reports, design reports, monitoring studies, scientific publications, etc.

Site visits and discussion with local experts :

11 sites on the Atlantic Coast

The 3 most important watersheds regarding the restauration plans since 1960s'

Mainsch - Grande AL

Introduction	Site	visits on the East Co	ast		Issues		
miroduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Alosa alosa – Grande alose ou alose vraie Alosa sapid

Alosa sapidissima – American Shad

Anadromous

Body elongate, strongly compressed laterally, deep Migration and spawning behavior vary with water temperature

- Average length: 50 to 70 cm
- Average weight: 1.5 to 3.5 kg
- Migration and spawning:
- Period varies mainly with water temperature (10 to 15°C)
- Upstream migration : February to June
- ✓ Spawning : May to August
- Very low repeat spawning (< 2%)

- Average length: 35 to 55 cm
- Average weight: 1 to 3 kg
- Migration and spawning:
- ✓ Period varies mainly with water temperature (13 to 20°C) (November in Florida, July in Canada)
- ✓ April to June on the East Coast
- Repeat spawning increase from the South to the North (between 0 % Florida and 70% New Brunswick CA -)
- ✓ Shad may return to spawn up to 6 years

Introduction	Site	e visits on the East Co	past		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Introduction

Susquehanna

Connecticu

Merrima

Fishing i

Conclusio

Life Maitisch & Grande Alose Elit

Bergerac 2015

Average flow at Conowingo (USGS 01578310) – 1967 / 2014 (m³/s)

Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	Ост	Nov	DEC	ANN
1280	1396	2093	2158	1368	971	558	419	595	716	1017	1444	1169

Introduction	Site	e visits on the East Co	oast			
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage

Colloque internation International sympo	nal sur l'é Is <mark>ium on</mark> I	tude, la restauration et la ge restoration and conservation	stion de l'alo of shads	se	Bergerac 2	015	Life Mailisch Grande Alos			* Elft	
SITE	КМ	FISHWAY	DROP (M)	ENTRANCES	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1997-2014	RATE	COUNTS 2014	RATE	
CONOWINGO	16	Power Plant Plant Fish lift (*2) Only 1 operated	20	3 2 operated 1 at a time	8.5 m ³ /s 0.3 to 2.7%/PP	2 435 m ^{3/} s	66 346	?	10 425	≈ 10%¹	

1: Shad population estimated between 80 and 120 000 downstream Conowingo. Information gathered during site visits. Ongoing study financed by the Maryland Department of Natural Ressources.

ntraduction	Site	e visits on the East C	oast		Conclusion		
ntroduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

1: Shad population estimated between 80 and 120 000 downstream Conowingo. Information gathered during site visits. Ongoing study financed by the Maryland Department of Natural Ressources.

Introduction	Site	e visits on the East Co	ast		Issues		
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Colloque internation International sympo	olloque international sur l'étude, la restauration et la gestion de l'alose nternational symposium on restoration and conservation of shads					Bergerac 2(015	Life M	attisch + G	rande Alose - El	lít
SITE	KM	FIS	SHWAY	DROP (M)	ENTRANCES	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1997-2014	RATE	COUNTS 2014	RATE
CONOWINGO	16	Power Plant	Fish lift (*2) Only 1 operated	20	3 2 operated 1 at a time	8.5 m ³ /s 0.3 to 2.7%/PP	2 435 m ^{3/} s	66 346	?	10 425	≈ 10%¹

1: Shad population estimated between 80 and 120 000 downstream Conowingo. Information gathered during site visits. Ongoing study financed by the Maryland Department of Natural Ressources.

Introduction

Susquehanna

Connecti<u>cu</u>t

Site visits on the East Coast

Merrim

Approa

ch Ent

itrance

Conclusion

Life Mailisch - Grande Alose Elit

DROP ATTRACTIVE **POWER PLANT** COUNTS AV. COUNTS SITE KM **ENTRANCE** RATE RATE **FISHWAY** (M) **FLOW** CAPACITY 1997-2014 2014 Power **Fish lift** 2 House 8.5 m³/s / E 1 730 m³/s HOLTWOOD 39 or 17 20 922 30% 2 528 24% 0.9 to 5.2 %/PP Spillway **Fish lift** 1

ntroduction	Site	e visits on the East Co	past				
ntroduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Maithsch + Grande Alose + Elft

DROP ATTRACTIVE **POWER PLANT** COUNTS AV. COUNTS SITE KM **FISHWAY** ENTRANCE RATE RATE (M) **FLOW** CAPACITY 1997-2014 2014 Power **Fish lift** 2 House 8.5 m³/s / E 1 730 m³/s HOLTWOOD 39 or 17 20 922 30% 2 528 24% 0.9 to 5.2 %/PP Spillway **Fish lift** 1

Introduction	Site	e visits on the East Co	oast		Conclusion		
Introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Maitisch - Grande Alose Elft

SITE	КМ	FISH	WAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW (m³/s)	POWER PLANT CAPACITY	COUNTS AV. 1997-2014	RATE	COUNTS 2014	RATE
SAFE HARBOR	50	Power Plant	Fish lift	17	3 2 operated	8.5 / entrance 0.9 to 9% / PP	3 200 m³/s	15 959	69%	1 336	53%

Introduction	Site	e visits on the East C	oast		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Colloque internation International symp	onal sur l'é osium on	tude, la restau restoration and	ration et la ge I conservation	estion de l'a 1 of shads	lose	Berger	ac 2015	Life Mathsch - Grande Alose - Elit			
SITE	KM	FISH	WAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW (m³/s)	POWER PLANT CAPACITY	COUNTS AV. 1997-2014	RATE	COUNTS 2014	RATE
SAFE HARBOR	50	Power Plant	Fish lift	17	3 2 operated	8.5 / entrance 0.9 to 9% / PP	3 200 m³/s	15 959	69%	1 336	53%

Introduction	Site	e visits on the East Co	oast		lssues		
Introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Mathsch & Grande Alose Elft

DROP **POWER PLANT** COUNTS AV. **COUNTS** SITE **FISHWAY ENTRANCE ATTRACTIVE FLOW** RATE RATE KM (M) CAPACITY (m³/s) 1997-2014 2014 5.7 m³/s **Fish Ladder** 88 2.7 10% / Reach 481 m³/s YORK HAVEN 2 5 3 3 9% 1% 1 8 (vert. slots) 1.1% / PP

atroduction	Site	e visits on the East Co	oast		Conclusion		
itroduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

DROP **POWER PLANT** COUNTS AV. **COUNTS** SITE **ENTRANCE** RATE RATE KM **FISHWAY ATTRACTIVE FLOW** (M) CAPACITY (m³/s) 1997-2014 2014 5.7 m³/s **Fish Ladder** 88 2.7 10% / Reach 481 m³/s **YORK HAVEN** 2 5 3 3 9% 1% 1 8 (vert. slots) 1.1% / PP

Introduction

Susquehanna

Connecticut

Merrim

Approa

ch Entr

rance

Life Mainsch Grande Alose Elit

Conclusion

!! Spawning areas between some dams! : Safe Harbor – York Haven

Introduction	Site	e visits on the East Co	oast		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Mainsch Grande Alose Elft

Conowingo - Results of telemetry monitoring conducted in 2010 and 2012

	RELATI	RELATIVE EFFICIENCY EACH STEP								
YEAR	ENTRANCE ATTRACTIVITY ¹	ENTRANCE COMPETED ²	INTERNAL EFFICIENCY ³	EFFICIENCY ⁴	(D)					
2010	90 %	73 %	61.5% in 2010 (72,5% in one try)	44 %	4					
2012	64 %	44 %	58.6% in 2012 (64,7% in one try)	26 %	10					

Holtwood - Results of telemetry monitoring conducted in 2001

Note: on the 204 marked shad released upstream of Conowingo dam, 136 were later detected in the tailrace (67%).

R	RELATIVE EFFICIENCY EACH STEP										
ENTRANCE ATTRACTIVITY ¹	ENTRANCE COMPETED ²	INTERNAL EFFICIENCY ³	EFFICIENCY ⁴	(D)							
84 %	75 %	54%	34 %	5							

York Haven – Results of the study done in 2010

Note: attractivity to the East Channel is estimated at 34% in 2010 and 24% of them reached the dam.

	RELATIVE EFFICIENCY EACH STEP										
ENTRANCE ATTRACTIVITY ¹	ENTRANCE COMPETED ²	INTERNAL EFFICIENCY ³	GLOBAL EFFICIENCY ⁴								
59 %	53 %	56 %	17 %								

1 : Shad coming close to the entrance (s) / shad present downstream

2 : Shad entering the fishway / shad coming close to the entrance (s)

3 : Shad completing their passage through the fishway / shad entering the fishway

4 : Global efficiency of shad passage

5 : Average time of passage from the tailrace to the exit of the fishway (day)

Introduction	Site	e visits on the East Co	past				
Introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Source : **Bellow Falls** Vermont Massachusetts New Hampshire Massachusetts 0 **Turners** Falls Massachusetts Connecticut

Bergerac 2015

Average flows for Connecticut River (m³/s)

urce : <u>http://waterdata.usgs.gov</u>

	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	Ост	Nov	DEC	ANN
Bellow Falls	217	201	385	767	464	241	147	124	113	198	259	259	281
Turners Falls	331	300	589	1 093	654	334	204	172	176	264	365	377	405
Holyoke	359	310	564	1 002	541	352	226	195	175	334	397	420	406

Infrod	IICTION

attern.

Susquehanna

Connecticut

Connecticut aval

Site visits on the East Coast

Mer

imack /

ach Entr

ISSUES

Conclusion

Life Maitisch - Grande Alose Elft

SITE	КМ	FISHWAY		DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967-2014	RATE	COUNTS 2014	RATE
HOLYOKE	139	Power House	Fish lift Or	16	3 2 operated	1.7 à 5.6 m ³ /s 0.7 to 4.1 % /PP	230 m³/s	313 043 ²	36% ¹	370 506	?
		Spillway	Fish lift	9	1	1.4 à 4.2 m³/s					

ellow Fatts New Hampshire Massachusetts Vermont Massachusetts urners Faile Massachusetts Connecticut Connecticut aval

1: Average shad population estimated : 770 868

2: 60 % thanks to spillway fish lift (power plant capacity < 25% average flow during April)

Introduction

Susquehanna

Connecticut

Site visits on the East Coast

Merrimac

Approach

Entrance

Conclusion

SITE	KM	FISHWAY		DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967-2014	RATE	COUNTS 2014	RATE
HOLYOKE 2	139	Power House	Fish lift <mark>Or</mark>	16	3 2 operated	1.7 à 5.6 m ³ /s 0.7 to 4.1 % /PP	230 m³/s	313 043 ²	36% ¹	370 506	?
		Spillway	Fish lift	9	1	1.4 à 4.2 m³/s					

Bellow Fatts New Hampshire Massachusetts Vermont Massachusetts imers Fail Massachusetts Connecticut Connecticut aval

1: Average shad population estimated : 770 868

2: 60 % thanks to spillway fish lift (power plant capacity < 25% average flow during April)

Introduction

Susquehanna

Connecticut

Site visits on the East Coast

Merrimack

Approach

Entrance

Conclusion

Bergerac 2015

Rivière Connectucut Barrage de Turners Falls Vue d'ensemble **Tronçon court-circuité** Passe à bassin de la prise d'eau Station 1 Canal d'amenée **Centrale Cabot** Passe à bassins 🖓 - Prise d'eau

hassin de l'évacuateur vers le canal d'amenée

Passe à

dérivation et évacuateur de crue

1 km

Barrage de

Introduction

Googleearth

Site visits on the East Coast **Susquehanna**

Connecticut

1

Colloque inter International	rnationa symposi	l sur l'étude, la re um on restoratio	estauration et la n and conservati	gestion de l'a on of shads	alose		Berge	rac 2015		Life Mains	ch Grande Alc	ose = Elft
SITE	КМ	FISH	IWAY	DROP (M)	ENTRANC	E ATT	RACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967- 2014	RATE	COUNTS 2014	RATE
		Cabot (power house)	Fish ladder (Ice Harb. Mod.)	20	5 1 operate	Up ed 2.7	to 12.3 m ³ /s 7% / PP				39 914	11%
TURNERS FALLS	URNERS 198 FALLS	Dam	Fish ladder (Ice Harb. Mod.)	11	1	2.8	to 12.3 m ³ /s	451 m³/s 1	13 499	4%		10% in average since 2010
		Gate House (water intake)	Fish ladder (dble vert. slots)	0.6 to 2.4	2	12 2.	3 m³/s 7% / PP					
eventered and the second and the sec			Image: set of the set of	ennectucut Train								
Introducti	ion	Site visits on the East Coast			it			Issues			Conclusio	
introducti		Susqueha	anna 🤅 🤇	Connectic	ut	Merrir	mack	Approach	Entrance	e Pa	ssage	

Colloque inter International	rnationa symposi	il sur l'étude, la re um on restoratio	estauration et la n and conservati	gestion de l'a ion of shads	ilose	Bergerac 2015			Life Maitisch - Grande Alose - Elft		
SITE	КМ	FISH	IWAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967- 2014	RATE	COUNTS 2014	RATE
		Cabot (power house)	Fish ladder (Ice Harb. Mod.)	20	5 1 operated	Up to 12.3 m ³ /s 2.7% / PP	451 m³/s	13 499	4%	ر 39 914 م	11%
TURNERS FALLS	198	Dam	Fish ladder (Ice Harb. Mod.)	11	1	2.8 to 12.3 m ³ /s					10% in average since 2010
		Gate House (water intake)	Fish ladder (dble vert. slots)	0.6 to 2.4	2	12.3 m³/s 2.7% / PP					2010
Th.	17								-		

Introd	luction	
murou	luction	Suco

Susquehanna

Connecticut

Site visits on the East Coast

rrimack

oproach |

ance

Conclusior

vert slots)

SITE

VERNON

KM

228

Power

Plant

Bergerac 2015

Life Mainsch - Grande Alose Elh

POWER DROP **ATTRACTIVE** COUNTS AV. COUNTS **ENTRANCE** RATE RATE **FISHWAY** PLANT (M) **FLOW** 1967-2014 2014 CAPACITY **Fish ladder** 5.7 m³/s 5 (Ice Harb. Mod. + 370 m³/s 69% 10 6 3 0 8 41% 27 700

Rivière Connectucut Rivière Connectucut Barrage de Vernon Vue d'ensemble Barrage de Vernon antrole hydroelectricus **Bellow Fatts** £1 € New Hampshire Massachusetts Vermont Massachusetts urners Falls Massachusetts Connecticut Connecticut aval

1 operated

IntroductionSite visits on the East CoastIssuesConclusionSusquehannaConnecticutMerrimackApproachEntrancePassage

1.5% / PP

Colloque international sur l'étude, la restauration et la gestion de l'alose	
International symposium on restoration and conservation of shads	

Life Maithsch - Grande Alose Elft

POWER DROP COUNTS AV. **ATTRACTIVE** COUNTS ENTRANCE RATE SITE KM **FISHWAY** PLANT RATE (M) FLOW 1967-2014 2014 CAPACITY Fish ladder 5.7 m³/s 5 Power VERNON 228 (Ice Harb. Mod. + 10 370 m³/s 6 308 41% 27 700 69% Plant 1 operated 1.5% / PP vert slots)

Introduction	Site	e visits on the East Co	oast	Issues			Conclusion
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

TURNERS FALLS:

CABOT STATION

Sullivan (2004) :

- Internal efficiency of the fish ladder from 1999 to 2002 = 13% in average
- Average time to go through the fish ladder is around 10 h : long time could explain the poor efficiency of the ladder, shads going back if the fishway is not completely done at dawn

Warner (2003):

- Internal efficiency = 17%
- Entrance efficiency = 34%

Detailed study (2003) : average efficiency in each pool = 80 to 95% \Rightarrow High number of pools (66) leads to low efficiency

SPILLWAY

Sullivan (2004) efficiency 1999-2002 = 16%

GATE HOUSE

Warner (2003) :

- Internal efficiency = 85%
- Entrance efficiency = 22%

=> Improvement of the canal entrance (addition of a downstream entrance on the right side) with good results: efficiency increased to 40-60%.

Life Mainsch - Grande Alose Elit

Average time of transit = 15 min

VERNON:

Bergerac 2015

Bergerac 2015

Average flows for Merrimack River (m³/s)

Source : <u>http://waterdata.usgs.gov</u>

Site	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	Ост	Nov	DEC	Ann
Lawrence	209	213	368	552	334	190	106	87	89	131	198	229	225
Lowell	188	188	332	514	311	174	97	80	82	121	182	208	206

Life Mainsch - Grande Alose Elit

Introduction	Site	visits on the East Co	oast		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Maitisch - Grande Alose Elft

SITE	KM	FISH	IWAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967- 2014	RATE	COUNTS 2014	RATE
LAWRENCE (ESSEX DAM)	48	Power Plant	Fish lift	11	2 1 still operated	4 m ³ /s 1.9 % / PP	210 m³/s	23 529	?	34 711	?

Introduction	Site	e visits on the East Co	bast				
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

RANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967- 2014	RATE	COUNTS 2014	RATE
2 still erated	4 m ³ /s 1.9 % / PP	210 m³/s	23 529	?	34 711	?

Life Mainsch + Grande Alose Elft

Introduction Site visits on the East Coast Issues Conclusion Susquehanna Connecticut Merrimack Approach Entrance Passage

Life Mathsch & Grande Alose Elft

POWER COUNTS DROP **COUNTS ATTRACTIVE ENTRANCE** RATE SITE KM **FISHWAY** PLANT AV. 1967-RATE (M) FLOW 2014 CAPACITY 2014 2 Power 3.4 m³/s **Fish lift** 11 1 still 1.7 to 4.8 % /PP house LOWELL operated 70 195 m³/s 10% 4 322 15% 3 3 9 6 (PAWTUCKET) Fish ladder (dble Spillway 4.6 6 m³/s 1 vert. Slots)

Introduction	Site	visits on the East Co	ast				
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Mathsch & Grande Alose Elft

POWER COUNTS DROP **COUNTS** ATTRACTIVE **ENTRANCE** PLANT RATE RATE SITE KM **FISHWAY** AV. 1967-(M) FLOW 2014 CAPACITY 2014 2 Power 3.4 m³/s **Fish lift** 11 1 still 1.7 to 4.8 % /PP house LOWELL operated 70 195 m³/s 4 322 15% 3 3 9 6 10% (PAWTUCKET) Fish ladder (dble Spillway 4.6 6 m³/s 1 vert. Slots)

Introduction	Site	visits on the East Co	bast		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Mainsch - Grande Alose Elh

POWER COUNTS DROP **COUNTS** ATTRACTIVE **FISHWAY ENTRANCE** PLANT RATE RATE SITE KM AV. 1967-(M) FLOW 2014 CAPACITY 2014 2 Power 3.4 m³/s **Fish lift** 1 still 11 1.7 to 4.8 % /PP house LOWELL operated 70 195 m³/s 4 322 15% 3 3 9 6 10% (PAWTUCKET) Fish ladder (dble Spillway 4.6 6 m³/s 1 vert. Slots)

Introduction	Site	visits on the East Co	ast		Conclusion		
Introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Life Mainsch - Grande Alose - Elft

SITE	KM	FIS	SHWAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967-2014	RATE	COUNTS 2014	RATE
AMOSKEAG	110	Power house	Fish ladder (Half Ice Harbor)	15	1	1.4 – 4.2 + Q passe	160	<1 000	<25%	<<	≈ 0%

Introduction	Site	e visits on the East Co	bast	Issues			Conclusion
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Life Mathsch - Grande Alose - Elft

SITE	КМ	FI	SHWAY	DROP (M)	ENTRANCE	ATTRACTIVE FLOW	POWER PLANT CAPACITY	COUNTS AV. 1967-2014	RATE	COUNTS 2014	RATE
AMOSKEAG	110	Power house	Fish ladder (Half Ice Harbor)	15	1	1.4 – 4.2 + Q passe	160	<1 000	<25%	<<	≈ 0%

Introduction	Site	visits on the East Co	oast				
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

	SIL	KIVI			(M)	LITINAIUCE	2014		2014	
Suivi des migrations d'aloses par comptage ente 1989 et 2011 sur la Merrimack	LAWRENCE (ESSEX DAM)	48	Power House	Fish lift	11	2 1 still operated	23 529	?	34 711	?
Lawrence	LOWELL	70	Power house	Fish lift	11	2 1 still operated	4 222	150/	2 206	10%
	(PAWTUCKET)	70	Spillway	Fish ladder (dble vert. Slots)	4.6	1	4 322	15%	3 390	10%
	AMOSKEAG	110	Power house	Fish ladder (Half Ice Harbor)	15	1	<1 000	<25%	<<	≈ 0%
années								<4%		

!! Spawning areas between some dams!

Life Mainsch - Grande Alose Elft

COUNTS

RATE

Introduction	Site	e visits on the East Co	oast		Conclusion		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Telemetry monitoring results done in 2005 and 2011 at Lowell

- 1 : Shad in the Lowell tailrace / shad upstream of Lawrence.
- 2 : Shad in the entrance / shad in the tailrace.
- 3 : Shad completing their passage through the fishway / shad entering the fishway
- 4 : Global efficiency of shad passage
- 5 : Average time of passage from the tailrace to the exit of the fishway (day)

	EFFIC	IENCY EACH S	TEP		
YEAR	ENTANCE ATTRACTIVITY	ENTRANCE COMPLETED ²	INTERNAL EFFICIENCY ³	GLOBAL EFFICIENCY ⁴	DURATION⁵ (J)
2011	57%	11%	65%	7%	9h
2002	55%	-		11%	-

Monitorings show the shad do not use the weir and pool fishway in the shortcut section of the river.

Maitisch - Grande Alose - Elit

Lowell Dam – Shad distribution in the tailrace in Spring 2011 – Legend: number of marked shad detected (source : Alden Research Laboratory; Inc., 2011)

Introduction	Site	visits on the East Co	ast	Issues			
miroduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Entrance approach efficiency: between 55 and 90%

Issues:

- Number / position of entrances
- Influence of turbine operation
- Attractive flows
- Maintain favorable hydraulic conditions close to entrances (rest area and flow perception)

Observations :

- Shad avoid areas with high turbulence, aeration and velocities
- Many of the entrances above turbine outflows have been closed because of high turbulence/low efficiency

Potential improvement:

- Turbine priorization and entrances uses depending on turbines operation Ex : Conowingo 90% in 2010
- Improve entrance positions Ex : Turners Falls, Gate House
- Attractive flow : hard to determine clearly the influence. Generaly 0.5 to 2% of total inflow. At Conowingo, experts expect to increase the attractive flow to 4-5% of the total inflow.

Mainsch Grande Alose

Conowingo – Susquehanna River

rimack River

Turners Falls Gate House – Connecticut River

Introduction	Site	e visits on the East Co	oast		Issues		
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Entrance approach efficiency: between 55 and 90%

Issues:

- Number / position of entra
- Influence of turbine operat
- Attractive flows
- Maintain favorable hydraul perception)

Observations :

- Shad avoid areas with high
- Many of the entrances abor high turbulence/low efficie

Potential improvement:

- Turbine priorization and en Ex : Conowingo 90% in 2010
- Improve entrance positions Ex : Turners Falls, Gate House
- Attractive flow : hard to determine clearly the influence. Generaly 0.5 to 2% of total inflow. At Conowingo, experts expect to increase the attractive flow to 4-5% of the total inflow.

Lowell – Merrimack River Conowingo – Susquehanna River Turners Falls Gate House - Connecticut River

Introduction	Site	e visits on the East Co	oast		Conclusion		
Introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Entrance efficiency : between 10 and 75%

Issues:

• Ensure entrance of the shad into the fishway

Observations :

- Difficulties seem come from:
 - ✓ Transition between open environnement and confined area
 - ✓ Hydraulic conditions : particularly turbulences due to attractive flow injection

Potential improvement:

- Efficient monitoring of the downstream levels
- Adapt hydraulic conditions on downstream levels
- Improve attractive flow injection
- Increase the depth?

Examples :

Vernon :

- In 2012, new instrumentation for downstream water levels monitoring
- Increasing of the efficiency from 0-10% to 40-70% (transfer rates from Turners Falls)

Lie Maitisch Grande Alose Elit

Lowell :

- Monitoring study 2011 : only 11% of the shad enter into the fishway
- In 2015 : regulation of the attractive flow and entrance drop depending on the downstream water levels.

Introduction	Site		Conclusion				
introduction	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Entrance efficiency : between 10 and 75%

Life Mailisch - Grande Alose Elft

Introduction	Site visits on the East Coast			Issues			Conclusion
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Life Mainsch - Grande Alose - Elft

Internal efficiency : 15 to 65% - Most of the time between 50 and 60%

<u>lssues :</u>

- Choice of the fishway type
- Lenght
- Hydraulic conditions

Observations :

- For fish lifts:
 - ✓ Shad seem to have difficulties to go trought the crowder gate
 - \checkmark Injection of the attractive flow could be a problem
- For fish ladders :
 - ✓ Most of the time, jets are plunging for Ice Harbor type (half, modified)
 - ✓ U-turn seem to be a problem for shad
 - ✓ Delays could be an issue. Shad have to go trought the pass before the sunset

Potential improvement:

- Design criteria from Larinier Travade 2002 are still current Gate House (Turners Falls), designed for shad, have internal efficiency between 85 and 100%
- Have a reflexion on the choice of fish lift VS fish ladders depending on delays to go trought the pass

Examples :

Holtwood :

- Approach 84 %, entrance 75 % but passage only 54%
- Injection of the attractive flow seems to be the main problem

Conowingo :

 Only 40 shad of 65 go upstream the crowder gate (2010 – 2012)

Turners Falls :

- Internal efficiency around 10-15%
- Delays seem to be too longs probably due to many reasons (hydraulic conditions, lenght, etc.)

Introduction	Site visits on the East Coast			Issues			Conclusion
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Internal efficiency : 15 to 65% - Most of the time between 50 and 60%

Examples :

Holtwood :

• Approach 84 %, entrance 75 % but passage only 54%

uie Mailisch - Grande Alose Elit

 Injection of the attractive flow seems to be the main problem

Conowingo :

• Only 40 shad of 65 go upstream the crowder gate (2010 – 2012)

Turners Falls :

- Internal efficiency around 10-15%
- Delays seem to be too longs probably due to many reasons (hydraulic conditions, lenght, etc.)

Introduction	Site visits on the East Coast			Issues			Conclusion
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Maithsch - Grande Alose - Elit

Life

Best efficiencies observed : approach 90% + entrance 75% + internal 85% → overall maximum of 60%!

Improvement – optimization have to be done for each phase

- To obtain global efficiency of 75%, the minimal efficiency have to be at least 90% at each phase...
- 3 dams equiped with fishways that allow 75% of efficiency => 40% of the stock upstream the third dam
- 5 dams......=> 25% of the stock upstream the fifth dam
- 10 dams.....=> 5% of the stock upstream the third dam

Introduction	Site visits on the East Coast			Issues			Conclusion
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion

Bergerac 2015

Life Maitisch - Grande Alose Elft

Introduction	Site visits on the East Coast			Issues			Conclusion
	Susquehanna	Connecticut	Merrimack	Approach	Entrance	Passage	Conclusion